桂健萍:黏膜黑色素瘤的分子遗传学及免疫微环境特点
时间:2024-06-13 19:00:33 热度:37.1℃ 作者:网络
编者按:黏膜黑色素瘤(mucosal melanoma ,MM)是一种高度侵袭性的恶性肿瘤。由于其独特的分子遗传学及免疫微环境特点,MM患者的治疗选择有限且反应率欠佳。MM发病率较低,目前关于MM的疾病特点仍知之甚少。为此,我们综述了MM的分子遗传学及肿瘤免疫微环境的研究现状。
本期「专家组稿」由吉林大学第一医院吴荻教授担任执行主编,与吉林大学第一医院肿瘤内科桂健萍医生共同分享黏膜黑色素瘤的分子遗传学及免疫微环境特点,为医者和患者提供更多参考。
一、分子遗传学
(一)染色体结构变异及拷贝数变异
MM的致癌驱动过程以结构变异和拷贝数变异为主[1]。既往多项研究发现MM的染色体结构变异多发生在5p、11q和12q,这同肢端黑色素瘤(acral melanoma,AM)相似[1-4]。
MM中主要的拷贝数变异为NOTCH2,KIT,TERT,CCND1,MITF,MDM2,CDK4和AGAP2的扩增 以及NF1,PTEN,CDKN2A/B,ATM ,TP53 ,SPRED1和ARID1B的缺失[3, 5]。
(二)肿瘤突变负荷
与暴露于紫外线的皮肤黑色素瘤(cutaneous melanoma,CM)(每兆碱基18.49-49.17个突变)相比[1, 2],MM的肿瘤突变负荷要(Tumor mutation burden,TMB)低得多(每兆碱基2.7-4.53个突变)[3-5]。
部分病变部位暴露在阳光下的MM也存在紫外线辐射特征[3],但是与CM相比,UVR诱导的DNA损伤在很大程度上被认为是可以忽略不计的。
与CM和AM不一样,MM各原发肿瘤部位间的TMB没有显著差异[2],头颈部MM的TMB只略高于直肠肛管MM和泌尿生殖道MM[3, 4]。
(三)驱动基因突变
MM中显著突变的基因是NRAS(12.1%-19.7%),BRAF(9.2%-16.4%),NF1(16.4%-34.2%),KIT(13%-14.9%),SF3B1(11.9%-15%),TP53(9.0%),SPRED1(7.5%),ATRX(6.0%),HLA-A(6.0%)和CHD8(4.5%)[2, 3, 6, 7]。
身体上部的MM和身体下部MM的显著突变基因突变频率无明显差异[7]。但不同发病部位MM的驱动基因突变频率略有不同。相较于BRAF突变(4.8%-6.25%),头颈部MM更常显示NRAS(4.8%-12.5%)和KIT突变(9.5%-14.58%),其中鼻窦MM的NRAS突变率(11.1%-40%)明显高于口腔MM(1.5%-28.5%)[1, 8-11]。食管MM更有可能显示NRAS突变(33%-37.5%)[12-14],而肛门直肠MM经常显示 KIT 突变(15%-35.5%) [15]。泌尿生殖道MM的NRAS(4%-21%)和KIT(2%-22%)突变频率相近[16-18]。
(四)分子通路
MM发展的重要分子途径同CM、AM相似。MAPK通路在CM(91%-95%)、AM(87%)、MM(60%-92%)中均高度突变,PI3K(56%-78%、82%、79%)和细胞周期通路(40%-74%、62.3%-74%、63%-81.7%)变异水平在三者中相似,而端粒维持途径在CM(83%-89%)中的突变程度高于AM(47%)和MM(42%)[1-4, 19]。
二、肿瘤免疫微环境
越来越多的表明证据,MM对免疫治疗反应不佳可能是由于这些肿瘤的免疫原性较低、肿瘤浸润淋巴细胞(tumor-infiltrating lymphocytes,TIL)浸润不良和PD-L1表达低。
Nakamura等人评估了各黑色素瘤亚型的免疫微环境状况,他们发现MM的CD4+ TIL、CD8+TIL及总TIL数都明显较CM低,而MM中肿瘤浸润调节性T细胞的比例显著高于CM[20]。据现有文献报导,MM中PD-L1的表达率约为16.7%-44%,远低于CM(44.7%-62%)[21, 22]。而且即使是PD-L1阳性的MM患者,其PD-L1表达水平偏低[23]。
由于MM广泛的病变部位,不同解剖部位的肿瘤免疫微环境是否相似还存在争议。Dai等人发现原发性食管MM对抗PD-1治疗的反应优于非食管MM。他们进一步探究发现,与非食管MM相比,食管MM免疫抑制特征更少,CD8 T细胞浸润更高[24]。然而,2022发表的一项观察免疫检查点抑制剂对MM疗效的国际回顾性队列研究,研究认为治疗效果与肿瘤的原发部位无关[25]。
总结
与CM高的单核苷酸变异及插入缺失突变不同,MM的分子遗传学特点和AM相近,主要以结构变异和拷贝数变异为主。来源不同的MM显著突变基因的频率有差异。
MM表现出抑制性的免疫微环境。相较于CM,粘膜黑色素瘤的PD-L1表达水平低及肿瘤浸润淋巴细胞浸润不足。目前,MM免疫微环境相关的研究极少,不同发病部位MM的免疫微环境是否一致仍有待进一步探讨研究。
参考文献:
1.Hayward, N.K., et al., Whole-genome landscapes of major melanoma subtypes. Nature, 2017. 545(7653): p. 175-180.
2. Newell, F., et al., Comparative Genomics Provides Etiologic and Biological Insight into Melanoma Subtypes. Cancer Discov, 2022. 12(12): p. 2856-2879.
3. Newell, F., et al., Whole-genome landscape of mucosal melanoma reveals diverse drivers and therapeutic targets. Nat Commun, 2019. 10(1): p. 3163.
4. Wang, M., et al., Integrated genomic analyses of acral and mucosal melanomas nominate novel driver genes. Genome Med, 2022. 14(1): p. 65.
5. Zhou, R., et al., Analysis of Mucosal Melanoma Whole-Genome Landscapes Reveals Clinically Relevant Genomic Aberrations. Clin Cancer Res, 2019. 25(12): p. 3548-3560.
6. Beaudoux, O., et al., Mutational Characteristics of Primary Mucosal Melanoma: A Systematic Review. Mol Diagn Ther, 2022. 26(2): p. 189-202.
7. Nassar, K.W. and A.C. Tan, The mutational landscape of mucosal melanoma. Semin Cancer Biol, 2020. 61: p. 139-148.
8. Guo, W., et al., Gene mutations and clinical prognosis of mucosal melanoma in different locations of head and neck. Acta Otolaryngol, 2022. 142(1): p. 94-99.
9. Öztürk Sari, Ş., et al., BRAF, NRAS, KIT, TERT, GNAQ/GNA11 mutation profile analysis of head and neck mucosal melanomas: a study of 42 cases. Pathology, 2017. 49(1): p. 55-61.
10. Zebary, A., et al., KIT, NRAS and BRAF mutations in sinonasal mucosal melanoma: a study of 56 cases. Br J Cancer, 2013. 109(3): p. 559-64.
11. Amit, M., et al., Mutation status among patients with sinonasal mucosal melanoma and its impact on survival. Br J Cancer, 2017. 116(12): p. 1564-1571.
12. Sekine, S., et al., Esophageal melanomas harbor frequent NRAS mutations unlike melanomas of other mucosal sites. Virchows Arch, 2009. 454(5): p. 513-7.
13. Lasota, J., et al., Primary malignant melanoma of esophagus: clinicopathologic characterization of 20 cases including molecular genetic profiling of 15 tumors. Mod Pathol, 2019. 32(7): p. 957-966.
14. Li, H., et al., Genetic alteration of Chinese patients with rectal mucosal melanoma. BMC Cancer, 2021. 21(1): p. 623.
15. Ni, S., et al., c-kit gene mutation and CD117 expression in human anorectal melanomas. Hum Pathol, 2012. 43(6): p. 801-7.
16. Hou, J.Y., et al., Vulvar and vaginal melanoma: A unique subclass of mucosal melanoma based on a comprehensive molecular analysis of 51 cases compared with 2253 cases of nongynecologic melanoma. Cancer, 2017. 123(8): p. 1333-1344.
17. Aulmann, S., et al., Comparison of molecular abnormalities in vulvar and vaginal melanomas. Mod Pathol, 2014. 27(10): p. 1386-93.
18. Tseng, D., et al., Oncogenic mutations in melanomas and benign melanocytic nevi of the female genital tract. J Am Acad Dermatol, 2014. 71(2): p. 229-36.
19. Genomic Classification of Cutaneous Melanoma. Cell, 2015. 161(7): p. 1681-96.
20. Nakamura, Y., et al., Poor Lymphocyte Infiltration to Primary Tumors in Acral Lentiginous Melanoma and Mucosal Melanoma Compared to Cutaneous Melanoma. Front Oncol, 2020. 10: p. 524700.
21. Kaunitz, G.J., et al., Melanoma subtypes demonstrate distinct PD-L1 expression profiles. Lab Invest, 2017. 97(9): p. 1063-1071.
22. Nakamura, Y., et al., Acral lentiginous melanoma and mucosal melanoma expressed less programmed-death 1 ligand than cutaneous melanoma: a retrospective study of 73 Japanese melanoma patients. J Eur Acad Dermatol Venereol, 2019. 33(11): p. e424-e426.
23. Dodds, T.J., et al., Primary anorectal melanoma: clinical, immunohistology and DNA analysis of 43 cases. Pathology, 2019. 51(1): p. 39-45.
24. Dai, J., et al., Molecular underpinnings of exceptional response in primary malignant melanoma of the esophagus to anti-PD-1 monotherapy. J Immunother Cancer, 2023. 11(1).
25. Dimitriou, F., et al., Single-agent anti-PD-1 or combined with ipilimumab in patients with mucosal melanoma: an international, retrospective, cohort study. Ann Oncol, 2022. 33(9): p. 968-980.